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Abstract

Despite extensive research, there is no agreement on the value of the elasticity of substi-
tution between capital and labour at the aggregate or the industrial level. Utilizing 2,419
estimates from 77 studies published between 1961 and 2017, this paper provides the first
meta-regression analysis for the US economy. We show that the heterogeneity in previously
reported estimates is driven primarily by modelling decisions for technological dynamics.
Throughout the analysis, the hypothesis of a Cobb—Douglas production function is re-
jected. Based on our meta-regression sample, we estimate a long-run meta-elasticity for
the aggregate economy in the range of 0.45-0.87. Most industrial estimates do not deviate
significantly from the estimate for the aggregate economy.

I. Introduction

The elasticity of substitution between capital and labour, o, is an essential concept in
macroeconomics. In theories of economic growth, the value of ¢ is crucial for a multitude
of issues, including the diminishment of marginal products (Brown, 1966), the speed of
convergence to the steady state (Turnovsky, 2002) or the role of technological change
(Acemoglu, 2003). As already shown by Solow (1956) and Pitchford (1960), perpetual
growth is possible even in the absence of technical progress if ¢ is sufficiently large.
Moreover, the substitutability between capital and labour also plays a key role for the
functional distribution of income. Since the seminal contribution of Hicks (1932), it is
well known that changes in relative factor endowments affect the distribution of income
between capital and labour if ¢ differs from unity. For example, Piketty’s (2014) explanation
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of the observed decline in the labour share of income crucially depends on the assumption
that ¢ > 1 (Piketty and Zucman, 2014; Acemoglu and Robinson, 2015).

Due to its relevance, consistent evidence on plausible values of ¢ would be valuable for
researchers and policy advisers. However, since the introduction of the constant elasticity of
substitution (CES) production function by Arrow et al. (1961), no consensus has emerged
in the empirical literature. For the US economy, Chirinko’s (2008) survey reports values
above, below and at unity. More recently, Grossman et al. (2017, pp. 1295) state that ‘[t]he
size of the elasticity of substitution is much debated and still controversial’.

Past research has identified several regularities underlying the heterogeneity in esti-
mation results. For instance, Lucas (1969) notes that early time series studies of the USA
typically reject the Cobb—Douglas assumption, whereas cross-sectional estimates tend to
support a unitary elasticity. Another regularity appears to be present with respect to the
choice of the estimation equation. Over a multitude of studies (e.g. Dhrymes and Zarem-
bka, 1970; Kalt, 1978; Young, 2013), the use of the first-order condition for labour yields
estimates exceeding those obtained by the use of the first-order condition for capital. In
addition, Antras (2004) reveals a regularity with respect to the treatment of technological
change. Based on theoretical and empirical evidence he demonstrates that the assumption
of Hicks-neutrality biases estimates towards unity in the presence of non-neutral techno-
logical change and roughly constant factor income shares. As will be outlined below, this
list of conjectures can be extended considerably.

The contribution of this paper is the first assessment of heterogeneity in estimates of
the elasticity of substitution between capital and labour in the US economy both at the
aggregate and the industrial level within a meta-regression framework.! In addition to
analyzing the effects of the different specification choices, we estimate meta-elasticities of
substitution based on our collected data. Conditional on these meta-estimates, we provide
evidence that for the economy as a whole, ¢ most likely falls in the range 0f 0.45-0.87. Thus,
the aggregated empirical evidence suggests that the US economy is most likely not well
represented by a Cobb—Douglas production function, which implies ¢ = 1. Furthermore,
we find that heterogeneity in previously reported estimates is mainly driven by different
specifications of technological dynamics.

The remainder of the paper is structured as follows. Section II briefly reviews central
properties of the CES production function. In section III, we introduce our search strategy,
provide an initial overview of the collected elasticity estimates and explore various possible
sources of heterogeneity. The actual meta-regression analysis is conducted in section IV,
where we first describe the data set and our empirical strategy. Subsequently, estimation
results are presented, followed by robustness checks and extensions. Section V concludes.

1Although still less applied than in other disciplines, meta-regressions have become increasingly popular in eco-
nomics. For example, Lichter, Peichl and Siegloch (2015) analyze the own-wage elasticity of labour demand and
Doucouliagos and Ulubasoglu (2008) focus on democracy and economic growth. For excellent overviews of meta-
(regression) analysis methods see Feld and Heckemeyer (2011) and Stanley and Doucouliagos (2012). Meta-analyses
based on observational data are usually subject to the limitation that different studies may draw on the same data
sources. This results in an informational overlap between the estimates reported in these studies. Since these overlaps
to some extent also exist in our data set, our analysis shares this limitation with other meta-analyses in economics.
However, there is variation in the data sources used by the studies included in our sample. Furthermore, these studies
cover different time periods and different levels of aggregation (firm/industry/country level). Against this background,
applying meta-analytic techniques can provide informative insights on the heterogeneity in estimates of the elasticity
of substitution.

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd



0 : A Meta-Regression Analysis 3

II. CES production function

In preparation for the following discussion of the potential sources of heterogeneity, this
section briefly introduces the CES production function. Its central parameter is the elastic-
ity of substitution between capital K and labour L, defined independently by Hicks (1932)
and Robinson (1933):

 d(K/LY/(KIL)
O A(FF/(FL/Fy)

(M

where output Y is produced by a linear homogeneous production function, ¥ = F(K,L).
F;=0Y/dL and Fx =0Y/0K denote the marginal productivities of the inputs. Following
equation (1), the elasticity of substitution can be regarded as the percentage change in the
capital-labour ratio due to a percentage change in the ratio of the marginal products of
inputs along a given isoquant curve.? Under certain conditions the standard Arrow ef al.
(1961) specification of the CES function can be derived from definition (1).* Allowing for
the possibility of factor-augmenting technological change as in David and Van de Klundert
(1965), a more general variant of the CES production function is

Y= ClrK)T + (1= mfL) =) @

where C is an (Hicks-neutral) ‘efficiency’ parameter and 0 <n <1 refers to a ‘distribution’
parameter that determines the relative importance of capital and labour in production. The
positive coefficients AX and A* capture the level of efficiency of capital and labour inputs
respectively. Variations over time ¢ are regarded as capital- and labour-augmenting tech-
nological change. Like all standard CES functions, (2) nests a Cobb—Douglas function for
o — 1, a Leontief function for ¢ — 0 and a von Neumann production function for ¢ — 00.*

III. The meta-sample and sources of heterogeneity

To construct a comprehensive database, we began our search process by examining several
literature reviews to identify relevant studies.’ Based on the identified literature, we selected
potential keywords to conduct different search queries to capture all remaining relevant
studies. As sources of peer-reviewed publications, Web of Science and EBSCOhost were
examined from the years 1961 to 2017. Search terms included, among others, ‘capital’,
‘labor’/‘labour’, ‘elasticity of substitution’ and ‘estimation’. To obtain additional literature
sources (working papers, books and dissertations), we also conducted a Google Scholar
search. We had to find an appropriate balance between an enhanced meta-sample that
improves the statistical power of our estimations and high comparability across studies. To
reconcile these two aims, we selected studies fulfilling the following criteria:

> Since its introduction, a multitude of variations and generalizations of the elasticity of substitution have been
developed. Stern (2011) presents a useful classification scheme for the various definitions and discusses how they
are related to one another.

*See de La Grandville (2017) for a derivation.

*In recent years, some studies make use of a ‘normalized’ variant of the CES function for comparative statics (see
Klump, McAdam and Willman, 2012). For a critical discussion see Temple (2012).

>These are Nerlove (1967), Caddy (1976), Kalt (1978), Chirinko (2002), Klump, McAdam and Willman (2007b),
Chirinko (2008), Leon-Ledesma, McAdam and Willman (2010) and Klump ez al. (2012).
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(i) The estimates were conducted for the US economy either at the aggregate or the
industrial level.
(ii) The estimates attribute homogeneity within each of the two production factors.®
(iii) The estimation equation of the study is derived from a CES production function
specification.’

To complete our search process, manual searches were performed to identify additional
studies using the reference list of each selected study. We considered prior versions of each
study and included diverging estimates. Furthermore, some of the estimates reported by
Dhrymes (1965) are omitted due to their correction in Dhrymes and Zarembka (1970).
Likewise, the estimates in Moroney (1970) are replaced by the corrected estimates pre-
sented in Lovell and Moroney (1973). The resulting meta-data comprise 2,419 observations
gathered from 77 studies published between 1961 and 2017. Summary information for each
study can be found in the online appendix. The search was conducted between February
and December 2017.

First glance at the collected elasticities

Figure 1 depicts the distribution of all collected estimates in the form of open-ended his-
tograms. The upper graph shows estimates which have been conducted at the manufacturing
or a higher aggregation level. The lower graph shows estimates at the industry level. In both
graphs, the vast majority of elasticities cluster between 0 and slightly above 1. Between
these values, no clear pattern towards a specific value is observable. Many values scatter
around 0.5 for the USA as a whole, but there is also a dominant peak between 0.9 and
1. The distribution of estimates on the industry level is less concentrated and almost flat
between 0 and 1. Only a small fraction exceeds the value of 2 in both graphs and almost
no estimate is negative.®

Combined with the histogram, Figure 1 also shows the individual estimates in a so-
called ‘funnel plot’. This illustrates in greater detail the relationship between the estimates
of ¢ and the inverse of their standard errors (1/se(6)), a common measure of precision in
meta-studies. As is readily observed, the estimates in the range between 0 and 1 are the most
precise.’ The absence of a clear funnel shape indicates study heterogeneity. A peak can be
identified around a value of 1, indicating a Cobb—Douglas production function. Precision is
also slightly higher in the neighbourhood of 0.4. Most interestingly, there is a considerable
cluster of high-precision estimates slightly above zero.!® A simple average of all 853
estimates for the aggregate economy suggests an elasticity of 0.54, a value slightly above the
first peak in the histogram—funnel plot. Assigning more weight to more precisely estimated

®Studies that adopt a capital-skill complementarity framework, where the elasticity of substitution is estimated
separately for different skill groups, as in Griliches (1969) or more recently in Krusell ef al. (2000), are excluded.

7 . . . . . .
Thus, we excluded estimates based on alternative concepts like translog or VES production functions. This reflects
the dominant role of the CES production function in the literature.

8Although negative estimates are theoretically implausible, they can still occur. Imagine the production function
would be truly of Leontief form, that is, ¢ = 0. In this case, we should observe estimates below the true value of 0 as
well as above due to sampling variability.

9Only estimates with a precision smaller than 200 are shown for readability.

"The same graph is shown for all industries individually in Figure A1 in the appendix. As can be seen, multiple
industries show a precision peak close to zero.
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Figure 1 Open-ended histogram and funnel plot, depicting collected estimates for the elasticity of factor
substitution on the aggregate as well as the industry level

values shifts the mean to 0.77 (inverse standard error weighted). As the funnel plot is not
symmetrically shaped and excess variation clouds the picture, inquiry beyond traditional
surveys is necessary.!! To explain why the estimates differ, it is important to collect more
information on the study designs. We will investigate below which of these design choices
crucially affect the estimation of the elasticity of substitution between capital and labour.

Sources of heterogeneity

To establish a comprehensive data sample, we identify the following likely sources of
heterogeneity in the estimates of ¢, which we summarize in the following categories: (i)
functional form of the estimation equation, (ii) technological dynamics, (iii) estimation
characteristics, (iv) data characteristics and (v) general study characteristics.

Functional form of the estimation equation

To estimate the CES production function, various empirical strategies have been devel-
oped. The following analysis distinguishes (i) all variants of first-order conditions of profit
maximization.'? Additionally, we include (ii) all types of two- or three-equation systems,
as for instance applied in Bodkin and Klein (1967), Klump, McAdam and Willman (2007a)

1 . . . . . .
Instead of plotting every single estimate, one could also just rely on the authors’ preferred estimate. This is not
feasible in our case. Usually authors do not indicate their preferred estimate.

12 o . . . . .
A derivation and complete assembly of all FOC variants considered in the meta-regression analysis can be found
in the online appendix.
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and Leon-Ledesma, McAdam and Willman (2015), (iii) a direct (nonlinear) estimation of
the CES production function and (iv) linear approximations, including the Kmenta (1967)
approximation.'® Some studies (e.g. Takayama, 1974; Young and Cen, 2007) apply a FOC
specification in growth rates, rather than in levels, for inputs and factor prices to estimate o.
All estimates based on such an approach are captured by a growth rates dummy. Although
the majority of studies maintain the assumption of purely competitive product and factor
markets, some studies allow for a potential mark-up over factor costs. Thus, a mark-up
dummy distinguishes all estimates that both freely estimate a time-varying, input-specific
(e.g. Raurich, Sala and Sorolla, 2012) or a time- and factor-averaged (e.g. Klump, McAdam
and Willman, 2004) mark-up as well as estimates that apply a predetermined positive value
(e.g. Leon-Ledesma et al., 2010).

Technological dynamics

As the influential contribution by Antras (2004) reveals, an important aspect of estimating
o is the treatment of technological dynamics. One can distinguish between estimations that
neglect technological progress and those that account for changes in technology parameters.
The latter, in turn, can be categorized according to the specified type(s) of technological
change, that is, Hicks-neutral, capital-augmenting, labour-augmenting or some combina-
tion thereof, and the specific form of technological dynamics, that is, a constant growth
rate or flexible dynamics modelled through a Box and Cox (1964) transformation.'* This
specification underlies 1% of all estimates. While the ‘constant growth rate’ specification
of technological dynamics is the most frequently used in the literature, there are alternative
specifications, which are coded as ‘other dynamics’ in the following. Therefore, in the
following analysis, we distinguish between (i) factor-augmenting (i.e. capital-augmenting,
labour-augmenting or both) technological change assuming a constant growth rate, (ii)
factor-augmenting specifications relying on the Box—Cox transformation, (iii) other factor-
augmenting dynamics, (iv) Hicks-neutral specifications assuming a constant growth rate
and (v) estimations neglecting technological change.!> Because Hicks-neutral and factor-
augmenting specifications are econometrically equivalent in case of the FOCs, we con-
sider those estimations to capture factor-augmenting technological change, even if the
corresponding paper draws on a Hicks-neutral model.

Estimation characteristics
As the majority of the studies included in our data set use OLS or nonlinear least squares
(NLLS), we distinguish between least squares estimates and estimates obtained by applying
other methods, such as generalized method of moments (GMM) or maximum likelihood
(ML).

Another problem is the potential endogeneity of regressors. For instance, the first-order
conditions of profit maximization can be interpreted as describing firms’ aggregate demand

13 . L L
Note that we also treat a simultaneous estimation of two FOCs, as applied in Kalt (1978), among others, as an
equation system.

" The assumption of a constant growth rate of technological efficiency is typically chosen to circumvent problems
related to the Diamond, McFadden and Rodriguez (1978) impossibility theorem. An application and introduction of
the Box—Cox transformation of technological change can be found in Klump et al. (2007a).

15 . . . . .
Note that we did not observe Hicks-neutral specifications employing the Box—Cox transformation.
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for capital and labour respectively. Estimations relying on FOC equations can, therefore,
be subject to simultaneous equation bias unless exogenous variables affecting supply are
used in the estimation procedure (Hausman, 1978; Antras, 2004). Typically, such endo-
geneity problems are addressed by applying instrumental variable (IV) regression. Our
meta-regression analysis estimates the effect of endogeneity correction by including a
variable capturing whether IV techniques were applied. However, a condition required for
consistency of the IV estimator is that there is no correlation between the instruments and
the error term. Otherwise, the IV estimator is inconsistent. Another known problem of the
IV estimator is that it may be biased towards the OLS estimator in finite samples when
instruments are weak. In case of both weak instruments and correlation between the instru-
ments and the error term, the IV estimator may even be more inconsistent than the OLS
estimator (Cameron and Trivedi, 2005). Since the exogeneity of the instruments used for the
IV estimations included in our sample cannot be assessed, differences between results rely-
ing on [V estimation and other estimation approaches should be interpreted with caution.

From a theoretical perspective, the firms’ first-order conditions for profit maximization
refer to long-run relationships between factor inputs and factor prices. In the short run,
however, firms are likely to face adjustment frictions and hence cannot be expected to im-
mediately respond to changes in factor prices according to these equations. Consequently,
one should expect that the elasticity of substitution between input factors is lower in the
short run. Turning to the econometric perspective, researchers should, therefore, be aware
of the gap between the long-run nature of the theoretical concept and the short-run nature
of the data usually available for estimation. Several approaches to solve this problem have
been proposed in the literature, including convex adjustment cost models, cointegration
techniques (Caballero, 1994) or the use of a low-pass filter (Chirinko and Mallick, 2017).
Following Chirinko (2008), we, therefore, distinguish among (i) estimates of the short-run
elasticity of substitution, typically derived by explicitly modelling frictions, (ii) long-run
estimates relying on cointegration models, low-pass filtering or time averaged data and (iii)
‘inconsistent’ approaches seeking to obtain the long-run elasticity at the theoretical level
(e.g. by the use of unadjusted first-order conditions) but relying on unadjusted (short-run)
data.

Data characteristics

Our sample comprises estimates based on cross-sectional, time series and panel data.
Furthermore, some regressions rely on aggregate data for the US economy, whereas others
are located at the industry or firm level. We, therefore, code whether an estimation relies
on (i) cross-sectional, (ii) time series or (iii) panel data. Another variable captures whether
the evidence is based on (i) country-level, (ii) industry-level or (iii) firm-level data.

The theoretical and empirical literature on economic growth stresses the relevance
of human capital accumulation. Therefore, some empirical studies adopt approaches that
’adjust’ labour input for human capital instead of relying on indicators of raw labour. Against
this background, we distinguish between estimations based on any type of quality-adjusted
labour and those based on unadjusted labour input.'¢

16 . . - o .
However, note that our data set does not include estimates of the elasticity of substitution between capital and
specific skill groups of workers.
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General study characteristics

To account for differences in the type of publication, we include dummies for peer-reviewed
journal articles, working papers and monographs (including books, handbooks and disser-
tations).

IV. Meta-regression analysis

The literature in general and the Monte Carlo studies by Ledn-Ledesma et al. (2010, 2015)
in particular provide some evidence on the characteristics of a state-of-the-art estimation.
Their simulations show that some model specifications lead to over- or underestimations
of the underlying parameter. These insights allow us to define reference categories for
each variable in the regressions. The constant of such a meta-regression model can be
interpreted as the meta-estimate of ¢, which one can expect to obtain with the reference
specification.!” Before we discuss our method in detail, we first describe our sample and
the choice of suitable reference categories for estimation.

Descriptive statistics and reference categories

Table 1 summarizes the distributional properties of our variables that are supposed to
explain the differences in the estimates of . The data set contains estimates from 77 studies
with an average of 31 estimates per study. Journal articles form our reference category
because it is assumed that peer review promotes the publication of high-quality estimates.
They represent 63% of the observations in the sample. The second largest category is
working papers with 28%, while estimates from monographs account for only 9% of all
observations.

Regarding the choice of the estimation equation, 14% of all estimates derive from
equation systems. Based on Monte Carlo simulations, Leon-Ledesma et al. (2010) provide
evidence that the simultaneous estimation of the production function with one or both FOCs
generally yields good estimates of g. Contradictory evidence is obtained by Stewart and
Li (2018). The authors note that the equation system approach does not appear to provide
a framework that overcomes the Diamond-McFadden—Rodriguez non-identification result
(Diamond et al., 1978) for Canadian data. Bearing this result in mind, we focus on estimates
of ¢ for the US economy using ‘equation system’ as our reference category. Production
function estimations represent 1% of the sample, whereas most studies opt for one of the
several versions of the first-order conditions.

In the possible case of imperfect factor market competition, it is necessary to control for
mark-ups to avoid bias, and, thus, estimates incorporating a mark-up in the model represent
our reference specification. Estimating in growth rates is likely to induce approximation
error, as those estimation equations are based on time derivatives, whereas real-world data
are ‘discrete’ in nature. Therefore, estimation in levels is chosen as the reference category.

With respect to technological dynamics, the Box—Cox transformation is the most flexible
approach and, therefore, chosen as the reference category. Only 1% of all estimations made

17Technically, such estimates are ‘within-sample predicted values of the dependent variable under a particular set
of conditions’ (Nelson and Kennedy, 2008, pp. 346). This requires all regressors to be categorical variables, as will
be shown below.
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TABLE 1
Descriptive statistics (N=2.419)
Mean SD  Min Max

Estimates per study 31.01 4489 1 250
Journal article estimates (Ref.) 0.63 048 0 1
Monograph estimates 0.09 029 0 1
Working paper estimates 0.28 045 O 1
Equation system (Ref.) 0.14 034 0 1
Direct estimation 0.01 0.09 0 1
Linear approx. 0.03 0.18 0 1
FOC capital 0.14 035 0 1
FOC capital-labour combined 0.24 043 0 1
FOC labour 0.22 042 0 1
Reverse FOC capital 0.01 0.09 0 1
Reverse FOC capital-labour combined 0.02 0.15 0 1
Reverse FOC labour 0.02 0.16 0 1
Estimation in factor shares 0.16 036 0 1
Mark-up (Ref.) 0.02 0.14 0 1
No Mark-up 0.98 0.14 0 1
Estimations in levels (Ref.) 0.78 041 O 1
Estimations in growth rates 0.22 041 0 1
Factor-augmenting, Box—Cox (Ref.) 0.01 0.10 O 1
Factor-augmenting, constant growth 0.39 049 0 1
Factor-augmenting, other 0.11 032 0 1
Hicks-neutral, constant growth 0.02 0.13 0 1
No technological dynamics 0.47 0.50 0 1
Long-run ¢ (Ref.) 0.16 036 0 1
Short-run o 0.07 025 0 1
Theoret. long-run/emp. short-run 0.78 042 0 1
Least squares estimation (Ref.) 0.90 030 0 1
Other estimation method 0.10 030 O 1
IV estimations (Ref.) 0.20 040 O 1
Non-IV estimations 0.80 040 O 1
Country (Ref.) 0.20 040 O 1
Industry level 0.67 047 0 1
Firm level 0.13 033 0 1
Time series (Ref.) 0.54 050 0 1
Panel 0.11 031 0 1
Cross section 0.34 048 0 1
Quality-adjusted labour (Ref.) 0.25 043 0 1
Unadj. labour 0.75 043 0 1

use of it, whereas 39% assume factor-augmenting technological change with a constant
growth rate. Finally, 47% do not specify any technological dynamics at all.

In most cases, the theoretical long-run model conflicts with the empirical treatment of
the data. Approximately 78% of all estimates fall into this category. Their results should
be in between the short- and long-run values in the strict sense. The reference category
covers all studies with a theoretical and empirical model that feature a long-run elasticity

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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(16% of the observations). We choose ‘long-run’ estimates of ¢ as the reference category,
as most of the literature is interested in long-run relationships.'®

Nearly all studies use some sort of least squares estimation, which serves as reference.
A few studies reporting many estimates employ other estimation methods.!® Instrumen-
tal variable (IV) techniques are used in 20% of all cases. Since neglecting endogeneity
problems may induce bias, [V estimations are chosen as the reference category.?

Regarding data characteristics, country data are treated as the reference because they
incorporate all substitution possibilities for which lower level data cannot account. To be
consistent with country data, the reference category for the data structure is time series
estimation. Regarding data on production factors, labour differs in productivity due to
differences in workers’ human capital levels. Estimates relying on some type of quality
adjustment applied to the aggregate labour input are chosen as the reference category, as
they account for such considerations.

Econometric model

Using the variables described above, our aim is to explain the heterogeneity in existing
estimates of ¢ by drawing on a regression framework. The general econometric model can
be written as:

K
&ijzao—l—Zﬂkka—i-sij 3)
k=1

with G;; being the estimate i=1,2,...,n; of ¢ in study j=1,2,...,J. g is the constant term
of the regression model with regressors x;, k =1,...,K that are supposed to explain the
heterogeneity in the estimates of ¢. The regression coefficients are denoted by f; and ¢;
represents the error term. As our variables are categorical, we create dummies for each of
these categories. If, for instance, in the ‘univariate’ case a variable has L categories, L — 1
dummies D' with /=1,2,....,L — 1 are included in the regression model:

&U:JO+51D;+B2D;—+'"+ﬁL71D571+8ij (4)

Category L is the so-called reference category. As outlined above, we choose all refer-
ence categories such that they represent the most reliable estimation of ¢ from a theoretical
and methodological perspective. The model consisting only of these reference categories is
the reference model. The advantage of this type of procedure is that it allows us to interpret
the constant term of the regression model as the elasticity of substitution one would expect

18 . . .
Note that choosing another category (e.g. ‘short-run’ estimates) as the baseline category would not alter the
implications of our results.

" Our results indicate that different estimation methods (least squares or other techniques) do not affect econometric
results of primary studies in important ways. Thus, our results imply that the chosen estimation methods have only
modest effects on the estimated elasticity.

**The most challenging task for IV regression is to find an exogenous and relevant instrument. If the instrumental
variable itself is endogenous, the IV estimator is not consistent. Although we are aware of this potential drawback,
we choose IV estimations as the reference category as we believe this approach to be superior to ignoring a likely
simultaneous equation bias.
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to estimate using a model with the specification corresponding to the reference categories.?!
Thus, an appealing feature of a meta-regression is that it allows us to obtain such a meta-
estimate although no study in our sample fulfils all criteria of the reference specification.

Another important issue in meta-regression is precision weighting. In general, more
precise estimates should have higher weight in meta-regression analysis since they are,
on average, closer to the population value of the estimated parameter.”? Therefore, our
preferred estimation approach relies on inverse standard error weighting.

Results

Table 2 shows the meta-regression results for weighted least squares (WLS) and random
effects (RE) models. Models (1) and (2) pool all observations, that is, industry specific as
well as aggregate economy estimates of . Models (3) and (4) introduce industry dummies.
This approach allows us to test explicitly for the difference between the elasticity of sub-
stitution of each industry and the aggregate economy. The inclusion of industry dummies
has almost no effect on the estimates of other coefficients. Therefore, we will not discuss
the models with and without industry dummies separately.

Our results for the dummies capturing the choice of different estimation equations
are mostly consistent with the evidence provided by Leon-Ledesma et al. (2010). The
regression coefficients for the FOC of capital, the combination of the FOCs of labour and
capital (FOC combined) and factor shares are always negative and significant (P <0.01),
indicating that estimates of ¢ relying on such functions tend to be lower than estimates
obtained from system estimations. According to the random effects models, the largest
effect occurs from direct estimations of the production function. The coefficient of the
reverse FOC of labour suggests that such estimations lead to higher estimates of ¢ compared
to system estimations. Again, the difference is significant for the RE estimation only. For
all other FOC variants, the difference compared to using an equation system seems to be
small and insignificant. The point estimates for the reverse variants of the FOCs are larger
than the point estimates for their non-reversed counterparts. The point estimates are also
consistent with the observation already made by Berndt (1976). Namely, estimates of o
tend to be higher when using the FOC of labour instead of the FOC of capital. Linear
approximations of the production function seem to lead to more diverse results — their
point estimates are large but imprecise. The sign of the coefficient switches between WLS

*! This can be formally illustrated in the following fashion:
2 n Dl R DX 4... p DLl
6y=60+p\Dy+ B0+ -+ B, Dj

The regression coefficient ﬁ, represents the estimated marginal effect of category / # L relative to the reference

category. In other words, f3; indicates the expected change in the estimated elasticity if the estimation specification
of a study deviates in that regard from the reference, c. p. In the reference model, all dummies are zero:

xj=L=D=Dj=---=Dj' =0= ;=60
The estimate of the constant term 4 yields the estimated value of ¢ for the reference category. This result generalizes

to multiple regression. In this case, 6y represents the estimated value of ¢ for a study making use of the reference
choices for all variables simultaneously.

22 . . . .
Of course, this is only true if the estimators are unbiased.
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TABLE 2
Results of WLS and RE estimations using inverse standard error weighting
7 @ 3) “@
WLS RE WLS RE
System (Ref.) - - - -
Production function —0.0657 —0.445%* —0.0694 —0.399%*
(0.273) (0.216) (0.270) (0.202)
FOC capital —0.194%**  —(0.132%** —0.178***  —0.123***
(0.0575) (0.0340) (0.0527) (0.0332)
FOC combined —0.312%**  —(.184*** —0.289%**  —(.176%**
(0.0734) (0.0395) (0.0670) (0.0383)
FOC labour 0.0109 0.00212 0.0154 0.0108
(0.0697) (0.0391) (0.0672) (0.0381)
Linear approximation 0.336 —-0.214 0.339 —0.169
(0.231) (0.175) (0.235) (0.164)
Rev. FOC capital —0.00232 0.00264 0.0162 0.0119
(0.0769) (0.0749) (0.0793) (0.0734)
Rev. FOC combined —0.0906 0.00434 —0.0713 0.0118
(0.0839) (0.0713) (0.0840) (0.0692)
Rev. FOC labour 0.178 0.180%*** 0.187 0.188%**
(0.151) (0.0647) (0.146) (0.0633)
Factor shares —0.150%**  —0.141%** —0.147%**  —(.140%**
(0.0477) (0.0297) (0.0465) (0.0290)
Factor-augmenting, Box—Cox (Ref.) - - - -
Factor-augmenting, constant growth 0.314%** 0.285%** 0.304%** 0.280%**
(0.0301) (0.0412) (0.0287) (0.0399)
Factor-augmenting, other 0.314%** 0.151 0.304** 0.153
(0.118) (0.155) (0.118) (0.137)
Hicks-neutral, constant growth 0.438*** 0.436%** 0.431%** 0.429%**
(0.0841) (0.0763) (0.0850) (0.0741)
No dynamics 0.421%** 0.565%** 0.407%*** 0.542%**
(0.0606) (0.0607) (0.0591) (0.0585)
Levels (Ref)) - - - -
Growth rates —0.153%**  —(.123%** —0.152%**  —(.121%**
(0.0346) (0.0212) (0.0323) (0.0208)
IV (Ref)) - - - -
Non-IV —0.118***  —0.0648***  —0.114%**  —0.0668***
(0.0442) (0.0226) (0.0415) (0.0221)
Least squares (Ref.) - - - -
Other method 0.0339 0.0101 0.0258 0.00763
(0.0330) (0.0217) (0.0321) (0.0211)
Quality-adjusted labour (Ref.) - - - -
Unadjusted labour 0.0586** 0.0261 0.0733%* 0.0417
(0.0282) (0.0253) (0.0297) (0.0262)
Country (Ref)) - - - -
Firm level —0.449%**  —(0.344** —0.496%**  —(0.393*%**
(0.0772) (0.153) (0.0721) (0.139)
Industry level —0.318***  —0.107* —0.367***  —(.178***
(0.0479) (0.0598) (0.0567) (0.0652)

(continued)
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TABLE 2
(Continued)
1) ) &) “)
WLS RE WLS RE
Time series (Ref.) - - - -
Cross section 0.254%** 0.194** 0.267*** 0.198***
(0.0591) (0.0786) (0.0580) (0.0749)
Panel 0.212* 0.133%** 0.236* 0.178***
(0.127) (0.0464) (0.128) (0.0540)
Mark-up (Ref.) - - - -
No mark-up —0.0439 —0.169*** —0.0464 —0.175%**
(0.0480) (0.0536) (0.0472) (0.0503)
Journal article (Ref.) - - - -
Monograph —0.0601 —0.00610 —0.0454 —0.00159
(0.0573) (0.118) (0.0535) (0.103)
Working paper —0.0579* —0.0505 —0.0459 —0.0406
(0.0304) (0.0732) (0.0312) (0.0646)
Long-run (Ref.) - - - -
Short-run —0.189* —0.156%** —0.194%* —0.165%**
(0.0998) (0.0285) (0.0919) (0.0281)
Theoret. long-run/emp. short-run 0.0479 —0.0745%** 0.0325 —0.0816***
(0.0722) (0.0239) (0.0660) (0.0237)
) 0.642%** 0.707*** 0.648*** 0.717***
(0.105) (0.0837) (0.0995) (0.0770)
Observations 2,419 2,419 2,419 2,419
R? 0.612 0.630
Industry dummies No No Yes Yes
gy lower bound 0.434 0.543 0.450 0.566
oo upper bound 0.851 0.871 0.846 0.868
Number of studies 77 77

Notes: WLS with clustered standard errors in parentheses; ***P < 0.01, **P < (.05, *P < 0.1.

and RE estimates. Overall, however, the results are consistent with our expectations given
the Monte Carlo evidence provided by Leon-Ledesma et al. (2010).

More important than the choice of the estimating equation seems to be the modelling
of technological change. All results consistently show that a less flexible modelling of
technological change results in higher estimates of the elasticity of substitution. According
to models (1)—(4), choosing a constant growth rate instead of the Box—Cox transforma-
tion for factor-augmenting technological change increases estimates of ¢ by approximately
0.29-0.31. Allowing only for Hicks-neutral change increases the estimates of ¢ by approx-
imately 0.43-0.44, and ignoring technological change altogether increases the estimate
of ¢ by 0.41-0.57. These large effect sizes are accompanied by small standard errors,
underscoring the strength of our evidence. Therefore, differences in specifications of the
technological dynamics account for the major differences in the estimation results reported
in the literature and can be considered a crucial design choice of empirical papers. On av-
erage, specifications belonging to the category ‘factor-augmenting, other’ result in higher
estimates, although not significantly for the RE models.
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Estimations based on growth rates and the use of techniques to address endogeneity
are observed to be associated with lower estimates of . We do not find relevant effects of
utilizing least squares instead of other estimation methods. The point estimate of unadjusted
labour is positive but small. However, it is noteworthy that adjusting the aggregate labour
input is not equivalent to estimating skill-specific elasticities of substitution. The fact that
we do not observe a relevant impact might, therefore, reflect shortcomings of common
approaches to adjusting labour quality using aggregate data.

Turning to the data structure, we observe that the use of firm- and industry-level
data yields systematically different estimates compared to those resulting from the use
of country-level data. In particular, firm-level data lead to much lower estimates of ¢. This
could reflect that firm- and industry-level estimates might not capture substitution possi-
bilities at higher levels of aggregation. Estimates obtained from panel and cross-sectional
data are higher than those obtained from time series data. According to the estimated effect
sizes, there is evidence that these data structures considerably alter estimates of . Allow-
ing for a mark-up is observed to decrease estimates of ¢ in the RE models. Hence, the
assumption of whether the zero-profit condition holds when deriving estimation equations
may be important for estimation outcomes. Our results do not give any reason to believe
that estimates reported in working papers or monographs differ systematically from those
reported in journal articles.

Estimates of the ‘short-run’ parameters reported in Table 2 show that the substitution
between capital and labour is more elastic in the long run than in the short run. Depending
on the model, the short-run elasticity is estimated to be approximately 0.16—0.19 lower than
the long-run elasticity. Moreover, estimates of the long-run elasticity based on unadjusted
(short-run) data are between short-run and long-run estimates. Thus, the application of suit-
able econometric techniques or data transformations when estimating long-run elasticities,
as recently done by Chirinko and Mallick (2017), appears to be an important modelling
decision.

Finally, o, reports our meta-estimates of ¢ for the discussed reference categories. For the
models (3) and (4) that consider industry differences, the WLS estimate of 0.65 is slightly
smaller than the RE estimate of 0.72. The table also reports lower and upper bounds of
dy (95% CI). None of the upper bounds exceed 0.871. Based on this evidence, a Cobb—
Douglas production function can be rejected at the 5% significance level. In addition, Figure
2 shows the deviation of each industry from the aggregate economy. As can be seen, only a
few significant differences can be identified. In particular, the tobacco, apparel, machinery,
transportation equipment and miscellaneous manufacturing industries differ significantly
from the aggregate economy.?® Our results indicate that all of these industries have a higher
elasticity of factor substitution than the economy in the aggregate. For the other 15 indus-
tries, the confidence interval includes zero. Hence, a deviation of zero cannot be ruled out.

Robustness and Extensions

In addition to the specification of weighted least squares and random effects models in the
previous section, we show results for fixed effects (FE) estimates as a robustness check

*Table 2 in the online appendix provides the complete list of included industries according to the Standard
Industrial Classification (SIC).
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Figure 2 Deviations of industry-specific substitution elasticities compared to the aggregate economy substi-
tution elasticity based on WLS estimates with 95% CI

in Table 3. The results without and with industry dummies are shown in models (5) and
(6) respectively. Applying FE in meta-studies has two drawbacks, which is why they serve
as robustness checks only. First, it is not possible to estimate effects for study-invariant
factors, such as the publication type (journal, working paper or monograph). Second, it is
not possible to estimate a meta-elasticity. Qualitatively, our primary results remain stable.
The FE models also indicate that approaches other than equation system estimation may
lead to lower estimates of o or have no effect, except for the reverse FOC for labour.
Contrary to our primary results, both models suggest that the use of linear approximations
of the production function to estimate ¢ leads to significantly lower estimates, which is
consistent with the simulation results obtained by Leon-Ledesma et al. (2010). The already
large coefficients of production function estimations in the RE models of Table 2 become
even larger. The crucial role of technological dynamics is confirmed by the FE models. All
coefficients are close to the results of the RE models, except for the coefficient of ‘factor
augmenting, other’, which drops out of the regressions due to a lack of variation within
studies. The coefficients for growth rates, IV, least squares and the quality adjustment
of labour remain virtually unchanged. According to the FE models, estimates based on
industry- and firm-level data do not significantly differ from those based on country-level
data, although the size of the coefficients is similar to the RE results. However, the loss in
precision could be driven by the low variability of data sets within studies. Cross-sectional
and panel results again lead to higher estimates of ¢. In the FE models, the coefficient of
the mark-up is not significant, which could again be driven by the low variability of mark-
up specifications within studies. Finally, as before, our FE results indicate that short-run
estimates lead to lower estimates of ¢. The magnitude of the coefficients is almost the same
as for the RE regressions.

In summary, our results show that the choice of the estimation equation and the specifica-
tion of technological dynamics crucially affect estimates of ¢. In particular, we showed that
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TABLE 3
Results of FE estimations using inverse standard error weighting
o) (©)
FE FE
System (Ref.) - -
Production function —0.732%** —0.726***
(0.274) (0.267)
FOC capital —0.117%** —0.104%***
(0.0357) (0.0349)
FOC combined —0.166*** —0.151%**
(0.0423) (0.0413)
FOC labour 0.0178 0.0303
(0.0414) (0.0405)
Linear approximation —0.452%%* —0.435%*
(0.222) (0.217)
Rev. FOC capital 0.0226 0.0362
(0.0761) (0.0742)
Rev. FOC combined 0.0360 0.0495
(0.0752) (0.0734)
Rev. FOC labour 0.199%*** 0.212%%*
(0.0661) (0.0645)
Factor shares —0.133%** —0.130%**
(0.0304) (0.0296)
Factor-augmenting, Box—Cox (Ref.) - -
Factor-augmenting, constant growth 0.317*** 0.315%**
(0.0456) (0.0444)
Factor-augmenting, other
Hicks-neutral, constant growth 0.442%** 0.435%**
(0.0808) (0.0788)
No dynamics 0.585%** 0.559%**
(0.0696) (0.0684)
Levels (Ref.) - -
Growth rates —0.119%*** —0.116***
(0.0213) (0.0208)
IV (Ref)) - -
Non-IV —0.0647***  —0.0667***
(0.0236) (0.0230)
Least squares (Ref.) - -
Other method 0.00723 0.00473
(0.0226) (0.0221)
Quality-adjusted labour (Ref.) - -
Unadjusted labour 0.0387 0.0640%*
(0.0270) (0.0284)
Country (Ref)) - -
Firm level —-0.217 —0.307
(0.378) (0.370)
Industry level —0.0290 —0.114
(0.0839) (0.0875)

Time series (Ref.) - _
(continued)
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TABLE 3
(Continued)
() (©)
FE FE

Cross section 0.283%%* 0.307%%*

(0.0928) (0.0914)
Panel 0.0855* 0.136**

(0.0495) (0.0568)
Mark-up (Ref.) - -
No mark-up —0.102 —0.104

(0.0691) (0.0674)
Journal article (Ref.) - -
Monograph collinear collinear
Working paper collinear collinear
Long-run (Ref.) - -
Short-run —0.154%** —0.163***

(0.0285) (0.0280)
Theoret. long-run/emp. short-run ~ —0.0905%**  —(.102%%**

(0.0241) (0.0237)
Observations 2,411 2,411
R? 0.126 0.170
Industry dummies No Yes
Number of studies 69 69

Notes: ¥*¥*P <(.01, **P <0.05, *P <0.1.

deviating from a factor-augmenting Box—Cox specification by assuming constant growth
rates of technology or no dynamics at all substantially alters the estimation outcomes.
Allowing for a mark-up when estimating ¢ based on first-order conditions might be a
favourable strategy.

Regarding the reference estimates of the long-run, aggregate o, two main conclusions
can be drawn. First, based on our meta-estimates, the long-run substitution elasticity be-
tween capital and labour is in the range of 0.45-0.87. Second, a Cobb—Douglas production
function implying a unitary elasticity can be rejected based on our data.?* Furthermore, most
industrial estimates do not deviate significantly from the estimate of the aggregate elasticity.

V. Conclusion

In view of approximately constant factor shares and supportive empirical evidence from
certain influential econometric studies, production functions of the Cobb—Douglas type
have been a common choice for describing the aggregate output of the US economy in
the past. This is in contrast to the estimated values of the elasticity of substitution in the
empirical literature obtained using a CES framework. The majority of studies suggests that
o <1. However, estimation results are characterized by substantial heterogeneity within

*of course, one might disagree with our reference categories. However, the choice of the reference category does
not alter the regression results. It is, therefore, possible to calculate the point estimate of g for any combination of
reference categories. For instance, if one prefers model (3) but believes that estimating in growth rates is superior to
estimating in levels, then 0.648 — 0.152 =0.496 would be the meta-estimate of the aggregate o.
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and across studies. In past research, several conjectures have been made to explain these
differences. By applying meta-regression techniques, we present the first rigorous quan-
titative assessment to jointly test multiple potential factors influencing estimates of o.
Furthermore, defining suitable reference categories for our regressors allows us to obtain
meta-estimates of ¢ based on our meta-sample.

Our results indicate that differences in the specification of technological dynamics
substantially affect the estimation outcomes. For instance, neglecting technological dy-
namics increases estimates of ¢ by 0.41-0.57, on average, compared to those resulting
from modelling factor-augmenting technological change with the most flexible Box—Cox
transformation. We also find evidence for a crucial role of the choice of the estimation equa-
tion. Thus, the use of single-equation approaches results, on average, in lower estimated
elasticities compared to equation system estimations.

Turning to our meta-estimate of ¢, all estimation results clearly indicate values below
unity. The interval estimates of our preferred models (3) and (4) indicate plausible values
of the long-run ¢ of the aggregate economy in the range of 0.45-0.87. This finding suggests
that a Cobb—Douglas production function is unlikely to be a good representation of the US
economy. Only certain industry estimates deviate significantly from the aggregate estimate
of 0.
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Histogram and funnel plot for single industries
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Figure A1 Open-ended histogram and funnel plot, depicting collected estimates for the elasticity of factor
substitution for each industry
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